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Abstract  37 

Pharmaceutical interventions are urgently needed to prevent SARS-CoV-2 infection and 38 

transmission. As SARS-CoV-2 infects and spreads via the nasopharyngeal airways, we 39 

analyzed the antiviral effect of selected nasal and oral sprays on virus infection in vitro. Two 40 

nose sprays showed virucidal activity but were cytotoxic precluding further analysis in cell 41 

culture. One nasal and one mouth spray suppressed SARS-CoV-2 infection of TMPRSS2-42 

Vero E6 cells and primary differentiated human airway epithelial cultures. The antiviral 43 

activity in both sprays could be attributed to polyanionic ι- and κ-carrageenans. Thus, 44 

application of carrageenan containing nasal and mouth sprays may reduce the risk of 45 

acquiring SARS-CoV-2 infection and may limit viral spread, warranting further clinical 46 

evaluation.   47 

 48 

Introduction  49 

The coronavirus disease 2019 (COVID-19) causing agent, severe acute respiratory syndrome 50 

coronavirus 2 (SARS-CoV-2), emerged at the end of 2019 and quickly spread within the 51 

human population around the globe (57). Manifestations range from mild common cold 52 

symptoms to severe lung injury, multi-organ dysfunctions and eventually death, especially in 53 

the elderly or patients suffering from co-morbidities (18). Measures to confine the spread of 54 

the virus include lock-down strategies which severely affect socio-economic structures. 55 

SARS-CoV-2 is mainly transmitted via respiratory droplets and aerosols exhaled from 56 

infected individuals and subsequent exposure of the respiratory mucosa of an uninfected 57 

individual (19, 35, 54). Agents reducing viral loads in the throat and nasal cavity or protecting 58 

mucosal tissue from initial infection, may prevent infection and reduce virus spread between 59 

individuals (30, 48). Sprays applied to the nasal and oral mucosa to soothe symptoms, reduce 60 

disease duration and increase viral clearance of respiratory infections caused by viruses such 61 
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as rhino-, influenza- or common cold coronaviruses have been approved and are available as 62 

over-the-counter medicine. Some contain decongestant compounds like xylometazoline (16), 63 

tramazoline, or oxymetazoline (39) to reduce symptoms of nasal congestion (9). This effect is 64 

supported by moisturizing or gel forming mucoprotective substances such as dexpanthenol 65 

(39) and hydroxypropyl methylcellulose (42, 51). Additionally, sulfated polysaccharides such 66 

as carrageenans are included as broad-spectrum antiviral agents (12–14, 27, 31).  67 

As SARS-CoV-2 infects the nasopharyngeal airways, we here analyzed one oral and five 68 

nasal sprays (Table 1) for their virucidal and antiviral activity against SARS-CoV-2. All 69 

sprays are commercially available and do not require prescription. Two of the sprays exert 70 

direct virucidal activity at high concentrations but also elicited cytotoxic effects. Two 71 

carrageenan-containing sprays inhibited SARS-CoV-2 infection of immortalized cells and, 72 

more importantly, fully-differentiated human airway epithelial cells resembling a crucial entry 73 

portal of the virus, with little to no effect on cell viability. Thus, application of these sprays 74 

may help to prevent from acquiring SARS-CoV-2 or suppress viral replication in the nasal 75 

epithelia in infected individuals, which may result in attenuated disease and reduced 76 

transmission rates. Further evaluation of antiviral nose sprays in clinical studies is warranted.  77 

 78 

Results 79 

To address whether commercially available, topically applied pharmaceuticals affect SARS-80 

CoV-2, we first determined the virucidal activity of five nasal (products A, C-F) and one oral 81 

(product B) spray (Table 1). To this end, high titers of the SARS-CoV-2 isolate 82 

France/IDF0372 were incubated for 30 minutes in 90 % (v/v) PBS or products A to F. 83 

Remaining infectivity was determined by measuring the tissue culture infectious dose 50 84 

(TCID50) on Vero E6 cells. Incubation with products A, B, E and F resulted in similar 85 

infectious titers as incubation in PBS, showing that these sprays have no direct virucidal 86 
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activity (Fig. 1A). Products C and D inactivated SARS-CoV-2 infectivity entirely, however, 87 

also affected cell viability (observed by light microscopy) so that the detection limit increased 88 

to 2×103 TCID50/ml (Fig. 1A, black lines), corresponding to a reduction of the viral titer by at 89 

least 99.5 %. 90 

We next explored whether the sprays may inhibit SARS-CoV-2 infection. For this, the 91 

products were titrated on TMPRSS2-expressing Vero E6 cells which were subsequently 92 

infected with SARS-CoV-2. Viral infection was determined 2.5 days later by MTS assay (33). 93 

Simultaneously, cell viability in the presence of the products but absence of virus was 94 

determined by quantifying intracellular ATP concentrations. Final cell culture concentrations 95 

of products D-F that exceeded ~ 2-5 % (v/v) resulted in massive cell death precluding any 96 

reliable conclusion regarding antiviral activity (Fig. 1B). Product C, which was virucidal (Fig. 97 

1A), was also cytotoxic (half-maximal cytotoxic concentration, CC50 ~ 4.4±0.15 %) but 98 

reduced viral infection with a half-maximal inhibitory concentration (IC50) value of 1.3±0.7 99 

%, corresponding to a selectivity index (SI) of 3.3. The non-virucidal products A (a nasal 100 

spray) and B (a mouth spray) inhibited SARS-CoV-2 infection with IC50 values of ~ 1.3±0.8 101 

% (v/v; corresponding to a ~ 77-fold dilution of product A) and ~ 3.1±1.7 % (v/v, 102 

corresponding to ~32-fold dilution of product B). Product A did not affect Vero E6 cell 103 

viability at concentrations up to 50 % (2-fold dilution) whereas product B reduced cell 104 

viability with a CC50 values of ~ 19.3 % (~5-fold dilution, SI ~ 6.2).    105 

Products A and B contain carrageenans (Table 1), which are sulfated polysaccharides isolated 106 

from red seaweeds previously shown to exert antiviral activity (4, 13, 15, 17, 20, 24). Product 107 

A contains ι-carrageenan (1.2 mg/ml) and κ-carrageenan (0.4 mg/ml), and product B ι-108 

carrageenan only (1.2 mg/ml). To evaluate whether these polyanions exert antiviral activity 109 

against SARS-CoV-2, we analyzed purified ι- and κ-carrageenan as well as ι-carrageenan 110 

only, without the additives of the products (Fig. 1C). Both carrageenan solutions reduced 111 
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SARS-CoV-2 infection with IC50 values of 21±13 µg/ml and 33±28 µg/ml, and did not affect 112 

cell viability at concentrations up to 160 and 120 µg/ml, respectively (Fig. 1C). The antiviral 113 

activities of both carrageenan preparations are similar to those of products A and B with 114 

calculated IC50 values of 20±13 µg/ml and 37±20 µg/ml, respectively. Thus, ι- and κ-115 

carrageenans inhibit SARS-CoV-2 infection and are responsible for the antiviral activity in 116 

products A and B.  117 

We next tested whether products A and B may also prevent SARS-CoV-2 infection of 118 

physiologically relevant target cells. For this, we generated from two donors fully 119 

differentiated human airway epithelial cultures (HAEC) which morphologically and 120 

functionally resemble the entry site for SARS-CoV-2 (19, 53). Cultures were exposed at the 121 

air-liquid-interface to either PBS, or a 2-fold dilution (50% (v/v)) of product A or B, and were 122 

then inoculated with SARS-CoV-2. One, two and three days later, cultures were stained for 123 

nuclei (DAPI) and SARS-CoV-2 spike protein as described (40), and then imaged by confocal 124 

microscopy (Fig. 2). At day 2, infected HAECs from both donors stained clearly positive for 125 

viral spike protein when treated with PBS. The signal intensities (Fig. 2A, B) and the number 126 

of infected cells (Fig. 2C, D) further increased at day 3, demonstrating productive infection. 127 

Products A and B blocked SARS-CoV-2 infection entirely (Fig. 2A, C) in HAECs from donor 128 

1, whereas a few spike positive cells could be detected in HAECs from donor 2 (Fig. 2B, D). 129 

Thus, SARS-CoV-2 infection of fully differentiated airway epithelial cell cultures can be 130 

efficiently reduced by carrageenan-containing nasal and mouth sprays. 131 

 132 
Discussion  133 

As SARS-CoV-2 primarily enters the human body via infection of nasal epithelial cells (50, 134 

54), we here evaluated whether nasal sprays may exert antiviral activity against this novel 135 

pathogen. We found that carrageenan-containing products A (a nose spray) and B (a mouth 136 

spray) inhibit SARS-CoV-2 infection of human airway epithelial cultures, which represent a 137 
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physiologically relevant entry site for SARS-CoV-2. Both over-the-counter products were 138 

applied as two-fold dilution at the air-liquid interface of the epithelia, and at these 139 

concentrations both products efficiently blocked SARS-CoV-2 infection of HAECs derived 140 

from two donors. The limited availability of these primary epithelia did not allow for testing 141 

of further dilutions of the sprays and hence to determine IC50 values. However, dose-response 142 

inhibition studies performed in a cell line showed that a ~77-fold dilution of product A 143 

suppressed SARS-CoV-2 half-maximally, and a 10- to 20-fold dilution by more than 80 %, 144 

suggesting that application of the spray into the nostrils might reach local concentrations on 145 

nasal epithelia that are sufficient to block SARS-CoV-2 infection.    146 

 147 

Products C and D showed virucidal effects upon incubation of virus in 90% (v/v) of the 148 

compounds. This virucidal effect is likely mediated by the ingredients xylometazoline 149 

hydrochloride and dexpanthenol (45) (present in product D), or the additive benzalkonium (2) 150 

(present in products C and D), all of which have previously been described as virucidal (2, 151 

45). Similar antiviral activities against SARS-CoV-2 were also reported for povidone-iodine 152 

containing sprays (present in product D), probably because of the disinfectant properties (1). 153 

Upon application of diluted nose sprays, antiviral activity was lost for product D but not for 154 

product C, which showed an IC50 value of 1.3 ± 0.7 % (v/v). However, both sprays 155 

diminished cell viability at concentrations exceeding 5 % (v/v) in cell culture, possibly due to 156 

the ingredient benzalkonium, a known cytotoxic preservative in both sprays (5, 8, 26). Also, 157 

the micro-gel containing products E and F were cytotoxic under conditions tested precluding 158 

any conclusions regarding a possible anti-SARS-CoV-2 effect. It should be mentioned, 159 

however, that the cytotoxic effects of products C-F obtained in our in vitro cell cultures 160 

assays do not reflect toxicity in vivo, since all sprays analyzed are tested for safety in humans. 161 

Furthermore, we emphasize that a repeated administration of nasal sprays (or respective 162 
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drops) containing decongestants may have harmful effects on the mucosa, which may 163 

inadvertently foster infection (25, 41, 44). 164 

 165 

Carrageenan containing products A and B inhibited SARS-CoV-2 infection of Vero E6 cells 166 

with IC50 values of 1.3±0.8 % (corresponding to 20±13 µg/ml of ι-/κ-carrageenan) and 3.1±1.7 167 

% (corresponding to 37±20 µg/ml). The anti-SARS-CoV-2 activity of purified ι-/κ-168 

carrageenans were in the same range, showing that these polymers are the responsible 169 

antiviral factors in products A and B. Carrageenans have previously been reported to have 170 

broad antiviral activity against e.g. influenza A, Dengue, hepatitis A, rhino- and common cold 171 

coronaviruses in cell culture and some clinical studies (15, 20, 27, 29), and application of 172 

carrageenan-containing nose sprays to combat SARS-CoV-2 has been suggested (21, 43, 47). 173 

Four preprint articles support our findings and show that a mixture of gellan and λ-174 

carrageenan (36) or ι-carrageenan inhibit SARS-CoV-2 infection (3, 24, 38). The antiviral 175 

effect of carrageenans is most likely based on decreased viral attachment to and entry into 176 

target cells. ι-carrageenan has been shown to interfere with papilloma or rhinovirus binding 177 

and entry due to its sulphated polysaccharide characteristics that mimic cellular heparan 178 

sulfates or aggregates viral particles (4, 17). Viral binding by ι-carrageenan has also been 179 

shown for influenza A and human coronavirus OC43 (29, 37). Thus, ι- and κ-carrageenan, 180 

which only differ in the number and location of sulphate moieties on the hexose scaffolds, 181 

potentially inhibit SARS-CoV-2 by a similar mechanism. This is supported by a recent study 182 

that confirmed inhibition and suggested SARS-CoV-2 aggregation by ι-carrageenan (49).  183 

 184 

Carrageenan containing products A and B do not contain potentially harmful decongestants. 185 

Furthermore, clinical trials showed that ι-carrageenan containing sprays have a good safety 186 

profile and resulted  in symptomatic benefit, reduced duration of symptoms, and reduced viral 187 

loads in adult and pediatric patients with common cold symptoms (12–14, 27, 31). Thus, 188 
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application of product A may be advisable as prophylactic agent to protect from acquiring 189 

SARS-CoV-2, or at the very early stage of viral infection, because it may reduce viral spread 190 

and viral loads in the nasal cavity. Notably, development of severe COVID-19 is always 191 

associated with viral dissemination from the upper into the lower respiratory tract. Thus, 192 

reducing viral infectivity in the nasal cavity by antiviral nasal sprays or in the oral cavity by 193 

oral sprays and rinses (34) early in infection may attenuate disease outcome (29), viral spread 194 

or transmission. It has to be considered that sprays applied to the nasal or oral cavity will not 195 

be evenly distributed as a protective film but are instead confined to some areas (11, 23, 28). 196 

Moreover, the deposited substance will be cleared by mucociliary (23, 42, 46) or salivary 197 

clearance (7, 22, 32). Thus, the protective effect might be temporally restricted, and not 198 

replace the effect of wearing a protective mask. Nonetheless, whilst providing only some 199 

protection, application of the sprays on already infected areas might prevent local spread of 200 

the virus potentially reducing viral loads and thus symptoms or transmission to another 201 

individuum.  202 

 203 

In conclusion, ι-/κ-carrageenan containing sprays might be useful repurposed pharmaceuticals 204 

for prevention and treatment of SARS-CoV-2/COVID-19 and animal and clinical studies are 205 

urgently required to evaluate efficacy in both settings. Finally, it should also be considered to 206 

improve the current formulations by combination of carrageenans with other anti-SARS-CoV-207 

2 agents, e.g. gelating agents (36),  molecular tweezers (52), peptides (55, 56) or neutralizing 208 

antibodies (10, 16).  209 

 210 

Material and Methods 211 

Reagents. 212 
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Viruseptin nasal and oral sprays were obtained from Häsla Pharma GmbH, Nasic from 213 

Klosterfrau Berlin GmbH, Rhinospray from Sanofi-Aventis, and Wick Erste Abwehr and 214 

Wick Sinex Avera from Wick Pharma, Procter & Gamble GmbH. Ι- and κ-carrageenan were 215 

purchased from Sigma.  216 

 217 

Cell culture. 218 

All cells were cultured in Dulbecco's modified Eagle's medium (DMEM, Gibco) containing 219 

100 units/ml penicillin, 100 μg/ml streptomycin, 2 mM L-glutamine. Vero E6 (Cercopithecus 220 

aethiops derived epithelial kidney) medium was supplemented with 2.5% heat-inactivated 221 

fetal calf serum (FCS), 1 mM sodium pyruvate, and 1x non-essential amino acids. Caco-2 222 

(human epithelial colorectal adenocarcinoma) cells (kindly provided by Holger Barth) were 223 

supplemented with 10% FCS. TMPRSS2-expressing Vero E6 cells (kindly provided by the 224 

National Institute for Biological Standards and Control (NIBSC), #100978) were 225 

supplemented with 10% FCS and 1 mg/ml geneticin. 226 

 227 

Generation of air-liquid interface cultures of human airway epithelial cells. 228 

Differentiated air-liquid interface (ALI) cultures of human airway epithelial cells (HAECs) 229 

were generated from primary human basal cells isolated from airway epithelia as recently 230 

described (53). Cells were isolated from tissue obtained from a male and a female donor in the 231 

age range 25-50 years. All experiments were performed with approval of the ethics committee 232 

of Medical School Hannover (Project no. 2701-2015). In short, 3.5 × 104 cells were seeded 233 

onto the apical side of collagen-coated, 6.5 mm Transwell filters (Corning Costar) in 200 µl 234 

apical and 600 µl basolateral growth medium. After 48 h the apical medium was replaced and 235 

after 72 - 96 h, upon confluency, completely removed (air-lifting). Then, the basolateral 236 

medium was replaced by differentiation medium, consisting of DMEM-H and LHC Basal 237 

(1:1) (Thermo Fisher) supplemented with Airway Epithelial Cell Growth Medium 238 
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Supplement Pack and was replaced every 2 days. Air-lifting defined day 0 of ALI culture and 239 

experiments were performed at day 25 to 28. To avoid mucus accumulation on the apical side, 240 

cells were washed apically with PBS for 30 min every three days from day 14 onwards. 241 

 242 

Virus strain and virus propagation.  243 

Viral isolate BetaCoV/France/IDF0372/2020 (#014V-03890) was obtained through the 244 

European Virus Archive global. Virus was propagated by inoculation of 70% confluent Caco-245 

2 cells in 75 cm2 cell culture flasks in medium containing 15 mM HEPES. Three days post 246 

inoculation when a strong cytopathic effect (CPE) was visible supernatants were harvested. 247 

Supernatants were centrifuged for 5 min at 1,000×g to remove cellular debris, aliquoted and 248 

stored at −80 °C. Infectious virus titer was determined as plaque forming units as previously 249 

described (6). 250 

 251 

TCID50 endpoint titration.  252 

To determine the tissue culture infectious dose 50 (TCID50), 20,000 Vero E6 cells were 253 

seeded per 96 well. 10 µl SARS-CoV-2 was mixed with 90 µl PBS or compound and 254 

incubated for 30 min at room temperature. Then, the mixture was titrated 5-fold and 18 μl of 255 

each dilution was used for inoculation in triplicates in total 180 µl. Cells were incubated for 6 256 

days and monitored for CPE. TCID50/ml was calculated according to Reed and Muench and 257 

detection limits determined by minimal applied virus dilution or cytotoxicity of the present 258 

compound. 259 

 260 

SARS-CoV-2 infection assay.  261 

To assess infection rate, virus-induced cell death was determined by quantifying cell viability 262 

via MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-263 

tetrazolium) assay. To this end, 18,000 TMPRSS2-expressing Vero E6 cells were seeded in 264 

Downloaded from journals.physiology.org/journal/ajplung (080.110.121.004) on February 17, 2021.



12 
 

96 well plates. The next day, the respective compound of interest was added and the cells 265 

inoculated with the desired multiplicity of infection (MOI) of SARS-CoV-2 in a total volume 266 

of 180 μl. After 2.5 days, when CPE was visible, 36 µl of CellTiter 96® AQueous One 267 

Solution Reagent (Promega G3580) was added to the medium and incubated for 3 h at 37°C. 268 

Then, optical density (OD) was recorded at 620 nm using an Asys Expert 96 UV microplate 269 

reader (Biochrom). All values were corrected for the background signal derived from 270 

uninfected cells and untreated controls were set to 100% infection. 271 

 272 

Cell viability assay. 273 

Cytotoxicity of the compounds was assessed using a cell viability assay measuring ATP levels 274 

in cells lysates with a commercially available kit (CellTiter-Glo®, Promega). Experiments 275 

were performed corresponding to the respective infection assays in the absence of the 276 

compound.  277 

 278 

Effect of product A and B on SARS-CoV-2 infection of HAECs. 279 

Immediately before infection, the apical surface of HAECs were washed three times with 200 280 

µl PBS to remove accumulated mucus. Next, 50 µl PBS or product, and 50 µl SARS-CoV-2 281 

(MOI 0.07) were added to the apical surface and incubated for 2 h at 37°C before inoculum 282 

was removed and cells washed three times with PBS. After one, two, and three days, cells 283 

were fixed for 30 min in 4% paraformaldehyde in PBS and permeabilized for 10 min with 284 

0.2% saponin and 10% FCS in PBS (perm/staining buffer). Cells were washed twice with 285 

PBS and stained with for SARS-CoV-2 spike protein (ab252690, abcam) diluted 1:300, 286 

respectively, in staining buffer over night at 4°C. After two PBS-washes, cells were stained 287 

with AlexaFluor488-labelled anti-rabbit anti-rat secondary antibody, respectively (all 1:500; 288 

Thermo Scientific) and DAPI + phalloidin AF 405 (1:5,000; Thermo Scientific) for 1 h at 289 

room temperature. Images were taken on an inverted confocal microscope (Leica TCS SP5) 290 
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using a 40x lens (Leica HC PL APO CS2 40x1.25 OIL). Images for the blue (DAPI) and 291 

green (AlexaFluor488) channel were taken using appropriate excitation and emission settings 292 

that were kept constant for all the acquisitions. For quantification, randomly chosen locations 293 

in each filter were selected and z-stacks acquired. A maximum z-projection was performed 294 

and anti-SARS-CoV-2 positive cells per area (0.15 mm2) visually identified and counted. 295 

 296 
Data availability: All data are available upon request to qualified researcher. 297 
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 501 

Figure Legends 502 

Fig. 1. Effect of nasal and oral sprays as well as carrageenans on SARS-CoV-2. A) SARS-CoV-2 503 

was incubated for 30 min in 90 % PBS or products A-F. The remaining infectious titer was determined 504 

by TCID50 analysis on Vero E6 cells. Values shown are means ± SD derived from three independent 505 

experiments, each performed in technical triplicates. Black lines indicate detection limits that increase 506 

upon cytotoxicity of the respective compound which was observed by light microscopy. B) and C) 507 

TMPRSS2-expressing Vero E6 cells were treated with indicated concentrations of product A-F (B) or 508 

carrageenans (C) and infected with SARS-CoV-2. Infection rates were determined 2.5 days later by 509 

MTS assay (blue squares). For determination of toxicity, cells were treated with indicated 510 

concentrations of compounds in the absence of virus, and cellular ATP was measured by CellTiter-Glo 511 

assay 2.5 days later (black triangles). Values shown in B and C are means ± SEM derived from two 512 

(Product C, D, E and F) or three (Product A, B,  ι- and κ-carrageenan, and ι-carrageenan) independent 513 

experiments, each performed in technical triplicates.  514 

 515 

Fig. 2. Product A and B inhibit SARS-CoV-2 infection of primary human airway epithelial 516 

cultures (HAEC). A, B) HAEC derived from donor 1 (A) and 2 (B) were exposed to PBS or 50 % 517 

(v/v) of product A or B, and then infected with SARS-CoV-2. After 2 hours, virus and compound 518 

mixture were removed and cells washed in PBS to restore air-liquid interface. After 1, 2 and 3 days, 519 
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filters were fixed and stained for SARS-CoV-2 spike protein (green) and cell nuclei (blue) and imaged 520 

by confocal microscopy. Shown are merged images. Scale bars represent 100 µm. n.a., not available. 521 

C, D) Number of infected cells per area were obtained by counting SARS-CoV-2 infected cells within 522 

microscopic images. Data represent analysis of 3-5 images per timepoint and condition and are means 523 

± standard deviation.  524 
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Table 1: Overview and composition of tested products A-F.  1 

Product Trade name Active agent Additives 

A Viruseptin 

(nasal) 

ι- and κ-carrageenan 

(1.2 and 0.4 mg/ml) 

sodium chloride 

B Viruseptin 

(oral) 

ι-carrageenan (1.2 

mg/ml) 

sodium chloride, xylitol, cherry flavor  

C Nasic 

(nasal) 

xylometazoline 

hydrochloride 

(0.1%), dexpanthenol 

(5%) 

benzalkonium chloride, monopotassium phosphate, 

disodium phosphate dodecahydrate 

D Rhinospray 

(nasal) 

tramazoline 

hydrochloride (1.264 

mg/ml) 

sodium chloride, citric acid, benzalkonium chloride, 

menthol, cineol, camphor racemic, sodium hydroxide, 

magnesium sulfate, magnesium chloride, calcium 

chloride, sodium hydrogen carbonate, povidone-iodine 

glycerol 85%, hyromellose 

E Wick Erste 

Abwehr 

(nasal) 

hydroxypropyl 

methylcellulose 

succinic acid, disodium succinate, pyroglutamic acid  

F Wick Sinex 

Avera 

(nasal) 

oxymetazoline 

hydrochloride (0.5 

mg/ml) 

sorbitol, trisodium citrate, polysorbat 80, benzyl alcohol, 

citric acid, benzalkonium chloride, acesulfame 

potassium, menthol, cineol, sodium edetate, aloe dry 

extract, L-carvone 

 2 

Downloaded from journals.physiology.org/journal/ajplung (080.110.121.004) on February 17, 2021.



Downloaded from journals.physiology.org/journal/ajplung (080.110.121.004) on February 17, 2021.



Downloaded from journals.physiology.org/journal/ajplung (080.110.121.004) on February 17, 2021.


	Article File
	Table 1
	Figure 1
	Figure 2

