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Abstract: Different kinds of red algae are enriched with chemically diverse carbohydrates. In particular,
a group of sulfated polysaccharides, which were isolated from the cell walls of red algae, gained a
large amount of attention due to their broad-spectrum antimicrobial activities. Within that group,
carrageenans (CGs) were expected to be the first clinically applicable microbicides that could prevent
various viral infections due to their superior antiviral potency and desirable safety profiles in
subclinical studies. However, their anticipated beneficial effects could not be validated in human
studies. To assess the value of a second attempt at pharmacologically developing CGs as a new
class of preventive microbicides, all preclinical and clinical development processes of CG-based
microbicides need to be thoroughly re-evaluated. In this review, the in vitro toxicities; in vivo safety
profiles; and in vitro, ex vivo, and in vivo antiviral activities of CGs are summarized according to the
study volume of their target viruses, which include human immunodeficiency virus, herpesviruses,
respiratory viruses, human papillomavirus, dengue virus, and other viruses along with a description
of their antiviral modes of action and development of antiviral resistance. This evaluation of the
strengths and weaknesses of CGs will help provide future research directions that may lead to the
successful development of CG-based antimicrobial prophylactics.

Keywords: sulfated polysaccharides; carrageenans (CGs); broad-spectrum microbicides; in vitro and
in vivo toxicity; in vitro; ex vivo; in vivo antiviral activity

1. Introduction

Microbicides are disinfectants designed to eliminate the infectivity of pathogenic microorganisms.
In general, they render infectious microbes non-viable and prevent further transmission. When they
are directed against viruses, they are often called virucides. The main antiviral mechanism of virucides
involves chemical and physical destruction of the virus particle’s structural components (i.e., envelope,
enveloped glycoprotein, capsid, and nucleic acid). Unlike conventional antiviral drugs that specifically
target essential viral and host functions necessary to complete the virus life cycle, virucides exert their
antiviral actions primarily by targeting the viral entry step via direct disruption of the actual virus
particles in a relatively less specific manner. For this reason, the systemic internal administration
of microbicides is not recommended due to safety concerns. Instead, the external application of
microbicides is the preferred administration route for the prevention of microbial transmission.

Carrageenans (CGs) are negatively charged polysaccharides isolated from the cell walls of red
algae [1–3]. Along with cellulose sulfate and naphthalene sulfonate, CGs belong to a group of sulfated
polysaccharides with a broad antiviral spectrum [4]. In particular, kappa (κ) and iota (ι) forms of
CGs are linear polymers with a repeating disaccharide unit composed of sulfated galactose and
anhydrogalactose, whereas the composition of lambda (λ) form of CG is solely based on sulfated
galactose without 3,6-anhydrogalactose (Figure 1). These two basic carbohydrate building blocks are
connected via α-1,3 and β-1,4 glycosidic linkages. Native carrageenan always present complex hybrid
structures are generally a mixture of galactans composed of different carrabiose types, proportions,
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and structure of which vary with species algae. The number of sulfate groups dictates the physical
property of these sulfated polyanionic substances. For example, κ-CG, containing one sulfate, forms a
rigid gel through a helix formation in ionic solutions, but iota ι-CG, containing two sulfates, forms a
flexible gel. In line with this trend, lambda λ-CG, containing three sulfates, does not possess a
gel-forming property because it is devoid of 3,6-anhydrogalactose [5]. λ-CG is more frequently used
as a thickener or a stabilizer instead. Due to their gelling, thickening, and stabilizing characteristics,
CGs are widely used in the food industry. Recently, these sulfated polysaccharides showed promise as
potential microbicides in the prevention of a variety of viral diseases [1–4,6]. CGs have demonstrated
efficient neutralization of several clinically relevant viruses including human immunodeficiency virus
(HIV), herpes simplex virus (HSV), influenza virus, human papillomaviruses (HPV), and dengue
virus (DENV). In particular, the topical vaginal application of CGs protected mice against several
sexually transmitted infections (STI) induced by both HIV and HSV [7–9]. Therefore, they were
proposed as the most suitable candidates in a multipurpose STI prevention strategy that involves
blocking the transmission of several STI-related viral infections at once. Also, the development of
CG-based microbicides as pre-exposure prophylaxis in the form of topical gels was expected to provide
a self-protective tool for women [10]. This may further contribute to the reduction of gender inequality
arising from male-dominant decisions on sexual behavior. However, despite all of these promising
results from subclinical in vitro and in vivo studies, clinical trials of several sulfated polysaccharides
showed no beneficial effects as preventive measures against major viral infections [11,12]. In some
cases, sulfated polysaccharides, paradoxically, enhanced viral infections, and caused a major drawback
in their clinical development [13–15].
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To reassess the feasibility of the second round of CG pharmacological development to create a
new class of preventive microbicides, all preclinical and clinical development processes of CG-based
microbicides need to be thoroughly re-evaluated. Therefore, this review aims to provide a full
picture of the current status and future challenges of developing CGs as broad-spectrum prophylactic
microbicides. To this end, the in vitro toxicities and in vivo safety profiles of the most studied CGs are
re-examined first. Then, their known common antiviral modes of action are explored at the molecular
level. As HIV is the most studied antiviral target for CGs, their in vitro, ex vivo, and in vivo anti-HIV
activities are re-examined in detail. In particular, the unexpected enhancement of HIV infectivity by
CGs is also discussed. Concerning the anti-herpesvirus activities of CGs (herpesvirus is the second most
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studied antiviral target of CGs), the in vitro and in vivo effects of CGs on various types of herpesviruses,
including HSV type 1, HSV type 2, and cytomegalovirus (CMV), are also described. In particular,
the development of CG resistance by HSV is also discussed. Considering that the development of
preventive measures against ongoing coronavirus-related pandemics is important, the effects of CGs
on respiratory viruses such as rhinovirus, influenza virus, and coronavirus are also updated along
with their effects on other viruses. Based on the strengths and weaknesses of CGs, a future research
direction for a successful second round of CG development as a new class of preventive microbicides
is proposed in the conclusion section.

In Vitro Toxicity and In Vivo Safety

The half-maximal cytotoxicity concentration (CC50) is the gold standard when assessing the
in vitro toxicity of potential antiviral candidates. Therefore, the CC50 values of CGs in different cell
lines used in virus research were determined. The cell lines include MDCK cells, Vero cells, C6/36 HT
mosquito cells, MDBK cells, BSR cells, MT-4 cells, PRK cells, HeLa cells, PLC/PRF/5, HepG2 cells,
foreskin PH cells, mouse astrocytes, and BHK-21 cells. As shown in Table 1, their CC50 values range
from 5 to 3000 µg/mL depending on the types of CGs and cell lines used [16–42]. Although more
sulfated CGs such as λ-CG seems to be less toxic to cells than less sulfated CGs such as κ-and ι-CGs,
it was difficult to draw any general relationship between the degree of sulfation and the cytotoxicity
due to the presence of many outliers (Table 1). The unspecified CG used in the study by Huang et al.
showed the lowest CC50, which was 5 µg/mL [29]. This might be due to their use of the unconventional
cell viability quantitation method based on cellular oxygen consumption rates instead of a more
traditional tetrazolium dye-based method [29]. The different origins of each cell line might also be
responsible for the diverse effects of CGs on cell viability. Nevertheless, most in vitro CG studies
demonstrated their superior cytotoxicity profiles; the highest CC50 values surpassed 1000 µg/mL,
which seems to be an unattainable concentration in in vivo application. However, the wide range of
CC50 values of CGs needs to be taken into account when CGs are applied to different tissues in vivo.

Table 1. In vitro CG toxicities. (CC50, half-maximal cytotoxicity concentration; MDCK cells,
Madin–Darby canine kidney cells; MDBK cells, Madin–Darby bovine kidney cells; BHK-21 cells,
baby hamster kidney 21-cells). When more than two CGs co-exist as a hybrid, they were listed together
with a dash.

CG Type Cell Line CC50 (µg/mL) Ref

κ-CG MDCK cells >250 [34]

κ-CG Vero cells >1000 [43]

κ-CG PRK cells >100 [18]

κ-CG Vero cells 2000 [27]

κ-CG CO-1 MDCK and A549 cells 857 [42]

ι-CG Vero cells 250 [35]

ι-CG Vero cells >1000 [21]

ι-CG Vero cells >500 [19]

ι-CG Vero and C6/36 HT mosquito cells >1000 [16]

ι-CG Vero cells >400 [32]

ι-CG Vero cells >5000 [43]

λ-CG Vero cells 400 [17]
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Table 1. Cont.

CG Type Cell Line CC50 (µg/mL) Ref

λ-CG Vero cells >10 [31]

λ-CG Vero cells >1000 [23]

λ-CG MDBK cells >1000 [26]

λ-CG Vero and C6/36 HT mosquito cells >1000 [37]

λ-CG BSR cells >1000 [30]

λ-CG MT-4 cells 300 [41]

λ-CG Vero cells >5000 [43]

λ-CG PRK cells >100 [18]

λ-CG Vero cells 3000 [27]

κ/λ-CG (PC-515) Hela cells >16 [33]

Oxidized κ/ι-CG Vero cells >1000 [25]

ι/λ-CG HeLa cells >100 [20]

κ/ι/λ-CG PLC/PRF/5 cells >1000 [28]

κ/ι/λ-CG Vero, HepG2 and foreskin PH cells >1000 [36]

κ/ι/λ-CG Vero and C6/36 HT mosquito cells >1000 [38]

κ/ι-CG, λ-CG, and υ/ν-CG Vero and human foreskin fibroblast cells >1000 [22]

κ/ι-CG, λ-CG, and υ/ν-CG Mouse astrocytes and Vero cells >1000 [24]

κ/ι/ν-CG Vero, HepG2, and foreskin cells >1000 [39]

κ/ι/ν-CG C2 Vero cells >1000 [40]

Unspecified CG BHK-21 fibroblast cells >5 [29]

Table 2 shows the in vivo safety profiles of three types of CG gels including ι-CG (PC-213), κ/λ-CG
(PC-515), and κ/λ-CG as well as a nonnucleoside reverse transcriptase inhibitor (MIV-150) and zinc
acetate (ZA) (PC-1005) in eleven different clinical studies that recruited a variety of different cohorts
based on HIV and sexual activity status. They were instructed to administer different types of CG gels
with varying frequency and duration. Most of the clinical studies reported very high acceptability of CG
gels because they did not irritate the female reproductive tract [44], caused no epithelial disruption [45],
caused no vaginal floral change [46], and most importantly, did not increase proinflammatory cytokines
in cervicovaginal lavages (CVLs) [47]. One study even reported increased sexual pleasure by using
CG gel [48]. The addition of other pharmacological ingredients such as MIV-150 and ZA had no
deleterious effects on the overall safety and acceptability of CG gels [49]. These data further indicate
the superior safety profiles of CG gels when used alone or in conjunction with other preexisting
anti-HIV therapeutics. Along with these desirable safety features, CGs also demonstrated effective
anti-HIV efficacy. This was demonstrated by a lack of HIV RNA genital shedding [46], reduced HIV
viral loads [50], and maintenance of anti-HIV activity in CVLs [49]. These desirable in vitro and in vivo
safety properties demonstrated by CGs accelerated their clinical development.
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Table 2. CG in vivo safety in clinical studies. (STI, sexually transmitted infections; CVL, cervicovaginal
lavage; HIV(−), HIV-negative; HIV(+), HIV-positive; MIV-150, nonnucleoside reverse transcriptase
inhibitor; ZA, zinc acetate).

CG Type Human Subject Duration and Frequency Effects Ref

2% ι-CG (PC-213) 25 women Once a day for 1 week
No irritation of the female

reproductive tract by
colposcopy

[44]

3% κ/λ-CG
(PC-515) 165 women 4 times per week for 1 year

No abnormal clinical signs or
symptoms, no vaginal flora

change, and highly acceptable
[51]

3% κ/λ-CG
(PC-515) 55 HIV(−) couples Before sexual intercourse

for 6 months
Highly acceptable and

increased sexual pleasure [48]

3% κ/λ-CG
(PC-515)

60 HIV(+) healthy
women and men

Once a day or before
sexual intercourse for

2 weeks
Highly acceptable [52]

3% κ/λ-CG
(PC-515)

60 HIV(+) healthy
women and men

Once a day or before
sexual intercourse for

2 weeks

No abnormal clinical signs or
symptoms, no vaginal flora

change, and no genital
shedding of HIV RNA

[46]

3% κ/λ-CG
(PC-515) 55 HIV(−) women Before sexual intercourse

for 1 month

Intact epithelium and no
increased proinflammatory

cytokines in CVL
[47]

3% κ/λ-CG
(PC-515) 55 HIV(−) couples

2–3 times per week before
sexual intercourse for 6

months

Generally acceptable, no
epithelial disruption, and no

abnormal genital flora
[45]

3% κ/λ-CG
(PC-515)

60 HIV(+) women
crossover

Once daily for 1 week
followed by 3-week

wash-out for 1 month

Reduced HIV viral load in
CVL and well tolerated [50]

3% κ/λ-CG
(PC-515) 400 HIV(−) women

3 times a week before
sexual intercourse for

6 months

No genital irritation or
epithelial disruption, no

difference in STI rate, and
generally acceptable

[53]

3% κ/λ-CG
(PC-515)

60 HIV(+) women
crossover

Once-daily for 1 week for
3 months with cross-over Highly acceptable [54]

3% κ/λ-CG +
MIV-150 + ZA

(PC-1005)
25 HIV(−) women Once-daily for 2 weeks

Well tolerated and
maintenance of anti-HIV and

anti-HPV activity in CVL
[49]

2. Mechanisms of Antiviral Action

Before describing the antiviral effects of CGs on several clinically relevant viruses in detail,
their common antiviral mode of action needs to be explained at the molecular level for a better
understanding of their common pharmacological actions. In general, the electrostatic interactions
between the anionic groups in the polysaccharide (mainly sulfates) and the basic amino acids of the
virus glycoprotein is an essential requirement for the initial adsorption of a virus particle to the cell
surface [2]. Particularly, the non-specific interaction of a virus glycoprotein with heparan sulfate on the
cell surface serves as a necessary first step in the engagement of host receptors by a virus for successful
viral entry. As a structural mimic to heparan sulfate, CGs form a complex with viral glycoproteins that
prevents them from binding directly to the extracellular heparan sulfate. This blocks viral attachment
and subsequent viral entry into a host cell.

In the case of HIV, CGs shield the positively charged sites of the HIV envelope glycoprotein (gp120)
via electrostatic interactions [4]. Since this HIV-heparan sulfate interaction is necessary for initial HIV
attachment to the cell surface before binding to the CD4 molecule of T cells, the interaction of CGs with
gp120 interferes with the CD4-binding function of gp120, thereby blocking HIV entry [3]. In addition
to this virus-targeting antiviral mechanism, CGs also exert antiviral actions via the inhibition of
intercellular viral transmission [3]. For example, CGs inhibit the transfer of HIV from HIV-infected
lymphocytes to uninfected epithelial cells [55]. The suppression of this intercellular HIV trafficking
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by CGs is thought to play a major role in the overall antiviral activity of CGs since the inhibitory
concentrations required to target intercellular HIV trafficking by CGs were one thousand-fold lower
than those required to target HIV entry [55].

Another host-targeting antiviral mechanism employed by CGs involves their direct binding to the
CD4 protein of T cells [56]. Once bound to CGs, CD4 cannot interact with gp120, preventing infection
of CD4-positive T cells by HIV [56]. In line with this, the association of CGs with CD4 inhibited
anti-CD4 monoclonal antibodies from binding to CD4, itself [56]. However, the ability of gp120 to bind
to monocytes was not affected by CGs, demonstrating their cell-type-specific antiviral effects [56].

Although the detailed molecular mechanism for these cell-type-specific antiviral activities of CGs
is not clear, the difference in the proteoglycan compositions between T cells and monocytes may play a
role in the differential antiviral actions of CGs. However, the antiviral activity of CGs tends to increase
with either a higher molecular weight or a higher degree of sulfation [3,57,58]. Since antiviral activities
of CGs mainly depend on neutralization of positively charged residues on either viral structural
proteins or host receptors through electrostatic interaction, the increased negative charges on CGs
by higher sulfation should contribute to the enhancement of the overall antiviral activities of CGs.
In addition, the specific position of the sulfate ester group appears to be another critical determinant
for the antiviral activity of sulfated polysaccharides [58]. Although the polyanionic nature of CGs
is a critical factor for antiviral activity, the type of the anionic group also seems to be important.
For example, carboxyl groups generally do not promote antiviral activity [58]. Thus, the antiviral
activity is not merely a function of high charge density but has distinct structural specificities. Therefore,
the nature of the negatively charged group and its position seem to influence their overall antiviral
activities. The composition of the repeating carbohydrates of CGs affects their antiviral potency.
Although one study demonstrated the higher antiviral potency of sulfated homopolysaccharides than
sulfated heteropolysaccharides [57], this observation does not seem to be generalizable due to the
presence of many other studies which suggests the opposite trend [58–60]. Of note, one group of
researchers reported the selective inhibition of HIV reverse transcriptase and viral replication in vitro
by a sea algal extract containing CGs; however, the exact intracellular anti-HIV mechanisms that
are independent of virus entry disruption are not known [61]. Another group of researchers also
reported a distinct antiviral mechanism of CGs that does not target virus entry [62,63]. They found that
augmentation of natural killer cells and CG-induced infiltration of polymorphonuclear neutrophils
inhibited the spread of murine cytomegalovirus from the peritoneal cavity to the plasma [62,63].
These two novel antiviral mechanisms exhibited by CGs deserve further attention to better understand
CG virus-entry-independent antiviral properties. For those who wish to understand the in-depth
antiviral mechanisms of action with a nice illustration, please refer to the following reference [6].

3. Human Immunodeficiency Virus (HIV)

3.1. In Vitro Anti-HIV Activity

HIV infection causes acquired immune deficiency syndrome (AIDS). Owing to the introduction
of highly active antiretroviral therapy, AIDS became a clinically manageable disease. Nevertheless,
continuous failures in developing HIV vaccines and a lack of effective preventive measures have been
large hurdles in effectively controlling new HIV infections. Those who live in resource-poor and
HIV-endemic regions have been most vulnerable to these recurring and uncontrolled HIV infections.
Also, the unavailability of self-protective devices further aggravated the already uncontrollable state of
new HIV infections [64]. Furthermore, the practice of unprotected receptive anal intercourse facilitated
the spread of new HIV infections due to enriched HIV target cells in traumatized rectal mucosa [65].
Therefore, there is a desperate need for new HIV prevention strategies that mitigate HIV transmission.
In this regard, CG-based topical anti-HIV gels were proposed as a promising on-demand, pre-exposure
prophylactic option for the public. The antiviral activities of CGs in vitro, ex vivo, and in vivo along
with the paradoxical increase of HIV infectivity by CGs are summarized below.
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One of the most frequently used methods to assess the in vitro potency of potential antiviral
candidates is the determination of their half-inhibitory concentration (IC50). For this purpose, the IC50

values of different CGs in several HIV-infected cell lines such as MT-4, CEM-SS, TMZ.bI, dendritic
(DC), HeLa-CD4-CCR5, and P4-R5 MAGI cells were determined by using various anti-HIV assays
(Table 3). These assays include plaque/cytopathic reduction assays, p24 ELISAs, luciferase assays,
and microtiter syncytial assays. Their IC50 values ranged from 0.03 to 100 µg/mL depending on the cell
type and experimental system. The IC50 values of most CGs were approximately 30- to 160-fold lower
than their CC50 values, suggesting wide therapeutic windows, which is the most desirable feature for
effective and safe pharmacological use (Table 1).

Table 3. CG in vitro anti-HIV activities. (AZT, azido-3′-deoxythymidine; ELISA, enzyme-linked
immunosorbent assay).

CG Type Experimental System Antiviral Assay IC50 (µg/mL) Ref

λ-CG MT-4 cells infected with
HIV-HTLVIIIB

Expression of HIV-specific
antigens and plaque

reduction assays
9500 (IU/mL) [61]

ι-CG MT-4 cells infected with
HIV ELISA of p24 antigen 100 [56]

ι-CG and κ-CG MT-4 cells and ME-180
cells infected with HIV ELISA of p24 antigen 1.6 and 4 [55]

Depolymerized
λ-CG

MT-4 cells infected with
HIV-HTLVIIIB

Expression of HIV-specific
antigens 3.9 (IC100) [66]

κ-CG and λ-CG MT-4 cells infected with
HIV-HTLVIIIB

Expression of HIV-specific
antigens 12 and 1.9 [18]

κ-CG and AZT
conjugates

MT-4 cells infected with
HIV (BRU)

Quantitation of
virus-induced
cytopathicity

0.1 [41]

λ/κ-CG + MIV-150
CEM-SS cells infected with

HIVMN and
HIV-2CDC310342

Microtiter syncytial assay 0.1–13.8 [67]

λ/κ-CG (PC-515) TMZ.bI and DC cells
infected with HIV-Bal

Quantitation of β-gal and
ELISA of p24 antigen 0.03–4.17, 1.61 [12]

ι-CG HeLa-CD4-CCR5 cells
infected with HIVJR-FL Luciferase assay 1–10 [68]

λ-CG P4-R5 MAGI cells ELISA of p24 antigen 3.7 and 64 [13]

λ-CG MT-2 cells infected with
HIV BaL and IIIB ELISA of p24 antigen 0.58 and 0.68 [14]

As mentioned previously, CGs such as ι-CG inhibit HIV entry into lymphocytes and
lymphocyte-to-epithelial transmission of HIV [55]. Interestingly, CG-induced suppression of
lymphocyte-to-epithelial transmission of HIV occurred at concentrations one thousand times lower
than the IC50 concentrations necessary for inhibition of HIV entry [55]. Since viral transfer is a critical
step in successfully establishing HIV infection in the target cells, this mechanistically distinct antiviral
mode of action might be useful for achieving maximal inhibition of HIV infection by CGs. On the
other hand, the polymerization status of CGs seems to be an important determinant for their antiviral
action since the depolymerized κ- and ι-CGs demonstrated much higher anti-HIV activities than native
polymerized CGs [66]. In addition, direct covalent modification of CGs with other types of anti-HIV
therapeutics synergized their antiviral activities. For example, when κ-CG was covalently conjugated
with 3′-azido-3′-deoxythymidine (AZT, a reverse transcriptase inhibitor), its anti-HIV activities were
enhanced [41]. The combined treatment of λ-CG with MIV-150 also reduced the original IC50 value of
λ-CG by approximately 10 times [67]. These data indicate the utility of chemically modifying CGs
or using them in combination with other antiviral drugs to improve their overall antiviral potency.
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As mentioned previously, higher CG antiviral activity is generated by increased sulfation. This was
evident since λ-CG exhibited reduced IC50 values when compared to those of κ- and ι-CGs (Table 3).

3.2. Ex Vivo Anti-HIV Activity

Five studies examined the anti-HIV activity of λ/κ-CG in conjunction with MIV-150 and ZA ex
vivo by using human cervical and macaque vaginal explants (Table 4). In general, human cervical and
macaque vaginal tissues are excellent ex vivo models for testing the antiviral activities of candidate
compounds against HIV infection because of their high in vivo similarity. These ex vivo studies
reported that λ/κ-CG, alone or in conjunction with MIV-150 and ZA, successfully suppressed HIV
infection. In particular, residual λ/κ-CG/MIV-150, which was retrieved from the CVLs of human
subjects after vaginal administration, maintained its inhibitory effects on HIV infections in human
cervical explants [9]. In another study, vaginal application of MIV-150/ZA gel inhibited simian-human
immunodeficiency virus reverse transcriptase (SHIV-RT) infection in macaque vaginal explants derived
from monkeys when applied vaginally in a similar ex vivo setting [69]. Similarly, the addition of
λ/κ-CG in combination with MIV-150/ZA showed much greater anti-SHIV-RT activity than tenofovir
gel in macaque vaginal explants [7]. In addition, this triple combination (λ/κ-CG/MIV-150/ZA) gel
completely protected macaque vaginal explants against free and cell-associated SHIV-RT infection [70].
These data further validate the superior antiviral activities of CGs in ex vivo conditions.

Table 4. CG ex vivo anti-HIV activities. (MIV-150, nonnucleoside reverse transcriptase inhibitor; ZA,
zinc acetate; RT-SHIV, Simian immunodeficiency virus mac239 bearing HIV reverse transcriptase).

CG Type Experimental Systems Antiviral Assay Effects Ref

λ/κ-CG (PC-515) Human cervical explants
infected with HIVBaL ELISA of p24 antigen 50% inhibition of

infection [71]

λ/κ-CG + MIV-150
+ ZA (PC-1005)

Human cervical explants
incubated with CVLs and
then infected with HIVBaL

ELISA of p24 antigen Inhibition of
infection [9]

λ/κ-CG + MIV-150
+ ZA (PC-1005)

Macaque vaginal explants
infected with SHIV-RT ELISA of p24 antigen Inhibition of

infection [7]

λ/κ-CG + MIV-150
+ ZA (PC-1005)

Macaques vaginal explants
challenged with SHIV-RT

Quantitation of viral DNA
and ELISA of SIVmac p27

Inhibition of
infection [69]

λ/κ-CG + MIV-150
+ ZA (PC-1005)

Macaques vaginal explants
challenged with SHIV-RT

infected PBMCs

Quantitation of viral DNA
and ELISA of SIVmac p27

Inhibition of
infection [70]

3.3. In Vivo Anti-HIV Activity

Before testing them in a human clinical trial, the anti-HIV activities of CGs were first tested in
mouse and macaque animal models (Table 5). In one mouse model, a λ/κ-CG formulation blocked
macrophage trafficking from the vagina to the lymph nodes [72]. Since the movement of macrophages
from the vagina to lymph nodes is an essential step for HIV spread after initial infection, the specific
blockage of this macrophage trafficking by CGs may delay the transmission of HIV to other parts of
the body. When λ/κ-CG was applied with either MIV-150, alone, or MIV-150/ZA as either vaginal or
rectal gels, it also successfully diminished vaginal and rectal transmission of SHIV-RT infection in both
vaginally and rectally challenged macaque models (Table 5) [7,8,12,73,74]. Of note, the addition of
MIV-150 did not increase the antiviral activity of λ/κ-CG in vivo. This is likely due to the limited activity
of an MIV-150 single-dose and the dominant barrier effect of λ/κ-CG [12]. The λ/κ-CG/MIV-150/ZA
triple combination also demonstrated antiviral efficacy against rectal infection when administered
close to the time of SHIV-RT exposure [75]. Vaginal SHIV-RT infection was also attenuated when
macaques were challenged after the administration of λ/κ-CG plus ZA gel with modified buffers and
cosolvent [8]. However, λ/κ-CG, alone, showed limited activity against cell-free and mature DC-driven
SHIV-RT infections [12]. Although low doses of λ/κ-CG enhanced SHIV-RT infection, the addition of
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MIV-150 with λ/κ-CG treatment overcame this enhancement effect and blocked DC-transmitted HIV
infection [12]. Despite these positive and preventive effects of CGs in different in vivo animal models,
a randomized, double-blind, and placebo-controlled clinical study using 6202 HIV-negative women
found similar HIV incidence rates and time to seroconversion in both placebo and λ/κ-CG-treated
groups [11]. Although the safety profiles of λ/κ-CG gel were acceptable in this human study, the further
development of CGs as a new class of anti-HIV microbicides was halted when λ/κ-CG demonstrated
no beneficial effects on the prevention of vaginal transmission of HIV [11].

Table 5. CG in vivo anti-HIV activities. (MIV-150, nonnucleoside reverse transcriptase inhibitor; PBMC,
peripheral blood mononuclear cells; ELISA, enzyme-linked immunosorbent assay; SHIV-RT, Simian
immunodeficiency virus mac239 bearing HIV reverse transcriptase, TFV; tenofovir).

CG Type Efficacy Model Dose ADMINISTRATION Antiviral Assay Effects Ref

λ/κ-CG

Inoculation of
stained mouse
macrophages

into the vagina
of mice

20 µL of stock Single inoculation

Counting the
number of

macrophages in
lymph nodes

90% inhibition [72]

λ/κ-CG +
TFV + Zn +

MIV-150

Macaques
vaginally

challenged with
SHIV-RT

3 mL of 3% gel Single vaginal Plasma viral load
quantitation

Inhibition of
vaginal

transmission
and no

difference in
antiviral activity

[7]

λ/κ-CG +
MIV-150
(PC-817)

Macaques
rectally

challenged with
SHIV-RT

3 mL of 3% gel Single rectal Plasma viral load
quantitation

Inhibition of
rectal

transmission
[12]

λ/κ-CG +
MIV-150 +

ZA
(PC-1005)

Macaques either
vaginally or

rectally
challenged with

SHIV-RT

2 mL of 3% gel Single vaginal Plasma viral load
quantitation

Inhibition of
infection [74]

λ/κ-CG +
MIV-150 +

ZA
(PC-1005)

Macaques either
vaginally or

rectally
challenged with

SHIV-RT

2 mL of 3% gel Single vaginal or
rectal

Plasma viral load
quantitation

Complete and
limited

inhibition of
vaginal or rectal

transmission

[73]

λ/κ-CG + ZA

Macaques either
vaginally or

rectally
challenged with

SHIV-RT

2 mL of 3% gel Vaginal for 2 weeks Plasma viral load
quantitation

Inhibition of
infection [75]

λ/κ-CG +
MIV-150 +

ZA
(PC-1005)

Macaques
vaginal explant
challenged with

either free or
cell-associated

SHIV-RT

1:100 and 1:300
dilution

Immersion of
explant with diluted

gels

Quantitation of viral
DNA and ELISA of

SIVmac p27

Inhibition of
infection [8]

λ/κ-CG
Preventive

effects on 6202
HIV(−) women

4 mL of 3% gel
Before sexual

intercourse for
9–24 months

HIV incidence by
seroconversion

No difference in
HIV incidence [11]

3.4. Enhancement of HIV Infectivity

Two studies noticed a seemingly paradoxical enhancement of HIV infection in the presence
of polyanionic compounds [12,68]. Similarly, cellulose sulfate, which is a structural analog of CGs,
also increased the risk of HIV infection [76]. In particular, cellulose sulfate showed a dose-dependent
biphasic effect on HIV infection in vitro [15]. In this study, low concentrations of cellulose sulfate
significantly and reproducibly increased HIV infection in in vitro experiments [15]. Similarly, in in vitro
“washout” experiments, λ-CG also significantly enhanced HIV infection despite potent antiviral activity
at higher concentrations [13]. This enhancement of HIV infection by a low dose of cellulose sulfate
was further supported by one clinical study [77]. In this study, a higher number of newly acquired
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HIV infections was observed in the cellulose sulfate-treated patient group than the placebo group [77].
The exact molecular mechanism for concentration-dependent pro- and anti-viral effects of polyanionic
compounds is still unclear. The interaction between a lower dose of polyanionic compounds with a
virus particle might transform its overall structure into one that is more favorable for the engagement
of the host receptor. This might lead to more efficient viral entry. This hypothesis needs to be tested in
the future to resolve one of the most concerning side effects of CGs.

On the other hand, the formation of amyloid fibrils in semen was also shown to play a positive role
in the promotion of HIV infection [78,79]. Since CGs improve the formation of amyloid fibrils, this might
be a potential mechanism for the enhancement of HIV infection by CGs [14]. Of note, human defensins
5 and 6, which are produced by cervicovaginal epithelial cells, also significantly enhanced HIV
infectivity [68]. They also antagonized the anti-HIV activity of CGs in vitro [68]. Interestingly,
higher concentrations of polyanion microbicides, including CGs, suppressed the HIV-enhancing effects
of human defensins 5 and 6 [68].

4. Herpesviruses

4.1. In Vitro Anti-Herpesviruses Activity

Herpesvirus infection is responsible for a wide variety of recurrent diseases such as cold sores,
shingles, congenital defects, and several malignancies [80]. More than 90% of the adult population
is estimated to be infected with one or more forms of herpesviruses [81]. They include herpes
simplex virus type (HSV) 1, Epstein Barr virus (EBV), varicella-zoster virus (VZV), and human
cytomegalovirus (HCMV). Fifteen different in vitro studies reported CG antiviral activities against
different herpesviruses by using various cell lines such as Vero cells, PPK cells, Hela cells, human foreskin
fibroblasts, mouse astrocytes, and MDBK cells [18,21–26,31,32,40,43,81–83] (Table 6). Quantitation of
plaque-forming units and virus-induced cytopathic effects were used to determine their IC50 values.
They vary from 0.01 to 34.3 µg/mL depending on the cell types, virus types, and experimental systems
that were used. Their anti-herpesviruses IC50 value range seems to overlap with their anti-HIV IC50

value range, which was from 0.03 to 100 µg/mL (Table 3). These data suggest that, similar to HIV,
human herpesviruses (e.g., HSV-1, HSV-2, HCMV, and VZV) and animal herpesviruses (e.g., bovine
herpesvirus type 1 [BoHV-1] and suid herpesvirus type 1 [SuHV-1]) are susceptible to CG inhibitory
activities [18,21–26,31,32,40,81–83]. In particular, antiherpetic activity was directly correlated with the
prevalence of alpha-D-galactose 2,6-disulfate residues in CGs [23]. Like HIV, virus adsorption also
seems to be the main target for CG antiviral action since CGs did not affect internalization or early or
late protein synthesis of herpesviruses [22]. Of note, anti-herpesvirus activity was increased by partial
oxidation of κ-and ι-CGs, which indicates the utility of structurally modifying CGs to improve their
antiviral actions against herpesviruses [25]. In line with the key role of sulfated groups in the execution
of antiviral activity in other viruses [43,58–60], the correlation of CG antiviral activity and the degree of
their sulfation was also applicable to herpesviruses. For example, the antiviral IC50 values of fractions
obtained from the same algal species against HSV-1 correlated well with their charge density induced
by sulfation [23].
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Table 6. CG in vitro anti-herpesvirus activities. (HSV, herpes simplex virus; CMV, cytomegalovirus;
VZV, varicella-zoster virus; PFU, plaque-forming unit; CPE, cytopathic effect; PPK cells, primary
porcine kidney cells; BoHV-1, bovine herpesvirus type 1; SuHV-1, suid herpesvirus type 1; MDBK cells,
Madin–Darby bovine kidney cells).

CG Type Herpes Virus Type Cell Line Antiviral Assay IC50 (µg/mL) Ref

ι-CG HSV-1 and 2 Vero cells PFU 2 and 10 [83]

λ/κ-CG HSV-1 and 2 PPK cells CPE 3.7, 1.6, 2, 1.5 [18]

λ/κ-CG CMV Hela cells CPE 2.8/0.3 [18]

λ-CG HSV-1 and 2 Vero cells CPE and PFU <100 [31]

λ-CG HSV-1 and 2 Vero cells CPE and PFU 0.3 [23]

κ-CG HSV-2 Human foreskin
fibroblast cells CPE 0.01 [81]

λ-CG type IV,
ι-CG type V HSV-2 HeLa cells CPE 2.4 and 1.4 [82]

λ-CG 1T1,
κ/ι-CG 1C1,
µ/ν-CG 1C3

HSV-1 strain F and
HSV-2 strain G

Vero cells and
human diploid

foreskin fibroblast
cell line PH

PFU 0.4–3.3 [22]

λ-CG 1T1,
κ/ι-CG 1C1,
µ/ν-CG 1C3

HSV-1 strain F and
HSV-2 strain G

Mouse astrocytes
and Vero cells PFU 0.4–3.6 [24]

ι-CG HSV-1 and 2 Vero cells PFU 0.65–9.33 [21]

κ/ι/ν-CG, C2 HSV-1 strain F and
HSV-2 strain G Vero cells PFU and survival 0.5–5.6 [40]

Oxidized k-
and ι-CG HSV-1 and 2 Vero cells PFU 0.98–34.3 [25]

λ-CG BoHV-1 and
SuHV-1 MDBK cells PFU 0.52 and 10.42 [26]

ι-CG HSV-1 Vero cells Neutral red dye 6.31 [32]

κ/ι/λ-CG VZV Vero cells PFU 0.5/0.8/1.8 [43]

4.2. In Vivo Anti-Herpesviruses Activity

Fifteen studies examined the antiviral effects of CGs on herpesviruses infection by using mouse
and cat models [7,8,40,62,63,82–89] (Table 7). CGs were used either alone or in combination with a
variety of other antiviral drugs such as nonoxynol-9, ZA, griffithsin, and MIV-150. Among them,
two studies confirmed CG antiviral activity against herpesviruses that did not target viral entry [62,63].
In these two studies, ι-CG augmented NK activity of spleen cells and facilitated the infiltration
of polymorphonuclear neutrophils into the peritoneal cavity and inhibited the spread of mouse
cytomegalovirus (MCMV) from the peritoneal cavity to the plasma [62]. All of the other 13 studies
verified the antiviral activities of CGs against HSV-2 infection via a common antiviral mechanism that
involves disruption of viral entry. In particular, the CG-based formulations used by Maguire et al.
were significantly more effective against herpesviruses infection than currently marketed spermicides
containing the same amount of nonoxynol-9 [90].

The λ-CG 1T1 demonstrated irreversible virucidal action against herpesviruses [84]. By using
the cat conjunctiva model, which is caused by feline herpesvirus-1 (FHV-1) infection, the antiviral
activities of CGs were further confirmed [88]. In this study, λ type IV CG shortened the duration
of the FHV-1-positive period in FHV-1-infected cats [88]. CG, when combined with griffithsin,
an algae-derived antiviral lectin protein, synergistically reduced HSV-2 vaginal infection in mice when
administered before HSV-2 challenge [86]. Furthermore, this griffithsin/CG combination formulation,
when administered in the form of a fast-dissolving insert, also protected mice against HSV-2 infection
when applied vaginally [80]. These animal studies clearly demonstrated the superior antiviral activities
of CGs in in vivo settings.
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Table 7. CG in vivo anti-herpesvirus activities. (PFU, plaque-forming unit; LD50, half-maximal lethal
dose; MCMV, murine cytomegalovirus; FHV-1, feline herpesvirus-1; CPE, cytopathic effect; FDI,
fast-dissolving insert; qPCR, quantitative polymerase chain reaction).

CG Type Efficacy Model Dose Antiviral Assay Administration Effects Ref

ι-CG type V
ICR mice

infected with
MCMV

0.5 mg PFU Intraperitoneal

Decreased
mortality and

titer and
increased
PFU/LD50

[63]

ι-CG type V
ICR mice

infected with
MCMV

0.5 mg PFU Intraperitoneal

Inhibition of
viral spread

from the
peritoneal cavity

to the plasma

[62]

λ/κ/ι-CG
BALB/c mice
infected with

HSV-2
0.05–1% PFU in vaginal

secretion Vaginal Inhibition of
infection [89]

κ-CG
C57B1/6 mice
infected with

HSV-2
0.1–100 mg/mL

Shedding of
virus, visible

lesions, and CPE
Vaginal Inhibition of

infection [81]

CG-based
nonoxynol-9

BALB/c mice
infected with

HSV-2
20 ul of 3% Symptom of

infection Vaginal Inhibition of
infection [90]

λ-CG type IV
(1T1), ι-CG

type V

Swiss Webster
mice infected
with HSV-2

10 mg/mL Sign of disease Vaginal Inhibition of
infection [82]

λ-CG
BALB/c mice
infected with

HSV-2
2 and 3% Survival Vaginal 100% survival [87]

λ-CG 1T1
BALB/c mice
infected with

HSV-2
10 mg/mL PFU and

survival Vaginal
90% survival
and no virus

shedding
[84]

κι/ν-CG C2
BALB/c mice
infected with

HSV-2
8 mg/mL PFU and

survival Vaginal 70% survival [40]

λ-CG type IV
FHV-1 induced
conjunctivitis in

cats
250 µg/mL PFU Topical

Reduction of
virus titers but
no alteration in

the clinical
course

[88]

λ/κ-CG + ZA
BALB/c mice
infected with

HSV-2
20 µL of 3% Survival Vaginal and

rectal
Inhibition of

infection [85]

λ/κ-CG + ZA
BALB/c mice
infected with

HSV-2
20 µL of 3% Survival Vaginal and

rectal
Inhibition of

infection [8]

CG +
griffithsin

BALB/c mice
infected with

HSV-2

50 µL of
griffithsin
solution

(19.1 mg/mL)

Infection rate Vaginal Inhibition of
infection [86]

CG +
MIV-150 +

ZA

BALB/c mice
infected with

HSV-2
10 µL of stock qPCR Vaginal Inhibition of

infection [7]

CG +
griffithsin

BALB/c mice
infected with

HSV-2

10 µL of 0.1%
stock qPCR Vaginal Inhibition of

infection [80]
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4.3. CG-Resistant HSV Variants

Due to the constantly mutating nature of RNA viruses, the development of drug resistance is
inevitable during long-term usage of antiviral drugs. Therefore, the development of resistance to
CGs by susceptible viruses needs to be monitored to assure consistent antiviral efficacy during their
application. To gain insight into the development of CG resistance, HSV-1 was grown continuously
in the presence of a low dose of CGs for a long period of time. As expected, HSV-1 variants arose
after chronic selection with CGs [91]. These CG-resistant HSV-1 variants formed large plaques with
an altered syncytial phenotype [91]. However, there was no correlation between the susceptibility of
HSV-1 to CGs and its syncytial phenotype [91]. Instead, these CG-resistant HSV-1 variants showed
a marked virulence when inoculated intranasally into mice and led to a generalized spread of the
virus [92]. Also, mice infected intranasally with two syncytial variants of HSV-1 showed altered
expression of cytokines [93]. The resistance-related characteristics of these HSV-1 syncytial variants
need to be explored in more detail to understand the underlying mechanism that leads to CG resistance.

5. Respiratory Viruses

5.1. In Vitro Anti-Respiratory Viruses Activity

In general, respiratory viruses are defined as viruses that cause either upper or lower respiratory
tract infections. Typically, they include influenza virus, parainfluenza virus, adenovirus, respiratory
syncytial virus (RSV), human rhinovirus (HRV), and coronavirus. Eight studies examined CG in vitro
antiviral activities against these respiratory viruses by using different susceptible cell lines (e.g., human
nasal epithelial, HeLa, MDCK, and Vero cells) [34,42,94–99]. As shown in Table 8, most CGs suppressed
respiratory virus propagation with IC50 values ranging from 0.04 to 276.5 µM. As with other antiviral
studies, CGs blocked the adsorption of respiratory viruses. However, one study reported that the
antiviral mechanism of action was independent of viral entry disruption. In this report, CGs inhibited
influenza A virus mRNA and protein expression after viral internalization into cells [42]. In addition,
ι-CG-containing over the counter (OTC) products such as lozenges and Coldmaris were also highly
active against respiratory viruses such as HRV 1a, HRV8, influenza virus A H1N1, coxsackievirus A10,
and human coronavirus OC43 [94,97]. Considering the ongoing coronavirus pandemics, a nasal spray
of CG-containing OTC products might be helpful for the prevention of coronavirus transmission.
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Table 8. CG in vitro anti-respiratory virus activities. (TCID50, median tissue culture infectious dose;
MDCK cells, Madin–Darby canine kidney cells; PFU, plaque-forming unit; CPE, cytopathic effect; IF,
immunofluorescence; HRV, human rhinovirus).

CG Type Virus Type Cell Line Anti-Viral Assay IC50 (µg/mL) Ref

ι-CG HRV 1A, 2, 8, 14,
16, 83, and 84

Human nasal
epithelial and

HeLa cells
TCID50 5–10 [95]

ι-CG

Influenza virus
strain H1N1

(A/PR8/34) and the
formerly pandemic

H3N2
(A/Aichi/2/68)

MDCK cells and
human nasal

epithelial cells
PFU 0.04–0.2 [96]

κ-CG Influenza A virus MDCK and A549
cells

TCID50 assay and
RT-PCR 32.1 [42]

ι/κ/ν-CG
hybrid

Influenza A H1N1
virus MDCK cells CPE inhibition 276.5 [99]

ι-CG +
zanamivir

Influenza A virus
H1N1(09)pdm,

H3N2, H5N1, and
H7N7

MDCK cells Immunostaining 0.39–11.8 [98]

κ-CG
Swine pandemic
influenza A virus

H1N1
MDCK cells

TCID50, CPE
experiments, IF,

and Western blot
89.57 [34]

ι-CG (lozenges)

HRV 1a, HRV8,
influenza virus A

H1N1,
coxsackievirus A10,

and human
coronavirus OC43

HeLa, MDCK, and
Vero cells

TCID50 and PFU,
agglutination assay

234–4524
dilution [97]

ι-CG and
xylometazoline
hydrochloride
(Coldamaris)

HRV 1a, HRV8,
and human

coronavirus OC43

HeLa, MDCK, and
Vero cells

TCID50 and PFU,
agglutination assay

16.5, 1.66, and
0.024 [94]

5.2. In Vivo Anti-Respiratory Viruses Activity

Five studies tested the in vivo antiviral potency of CGs against respiratory viruses alone or in
conjunction with zanamivir, which is a neuraminidase inhibitor of the influenza virus, by using mouse
models (Table 9) [96,100–103]. First, Fujisawa et al. found that type II CGs depleted macrophages and
increased polymorphonuclear leukocytes, resulting in an enhanced influenza virus titer [100]. Based on
this data, they suggested that type II CG-resistant polymorphonuclear leukocytes play a protective
role during the early stages of influenza virus infection [100]. This virus-assisting effect of type II CGs
seems to be independent of viral adsorption inhibition [102]. In contrast to this report, three in vivo
mouse studies found decreased viral titers, increased host survival, inhibition of pulmonary edema,
decreased weight loss, and reduced necropsy and inflammation when mice were pretreated with CGs,
and then challenged with influenza A virus [96,98,101]. In particular, infecting mice with a lethal dose
of influenza A virus followed by ι-CG treatment protected mice to a similar degree as mice treated
with oseltamivir, which is another neuraminidase inhibitor of influenza virus [96]. The intranasal
application of zanamivir and κ/ι CG is also synergistically active against influenza A virus in the murine
model [98]. One study evaluated the safety of ι-CG via an intranasal route by using animal models [104].
This study revealed no penetration of ι-CG across nasal mucosa and no systemic delivery of ι-CG into
the bloodstream [104]. Consistently, no relevant toxic or secondary pharmacological effects due to
systemic exposure were observed in the rabbit or rat repeated dose toxicity studies [104]. In addition,
no signs of immunogenicity or immunotoxicity and no stimulation of a panel of pro-inflammatory
cytokines were observed by the treatment of ι-CG in both in vivo and in vitro models [104].



Mar. Drugs 2020, 18, 435 15 of 27

Five clinical studies also supported the beneficial effects of CGs in alleviating clinical symptoms
and reducing viral loads (Table 10) [61,105–109]. In particular, the administration of a ι-CG nasal
spray reduced symptoms of the common cold and viral loads in nasal lavages in patients with early
symptoms of the common cold [105]. Although ι-CG treatment failed to alleviate acute common cold
symptoms in children, it did significantly reduce viral loads in nasal secretions [106]. Another study
also reported that direct local administration of CGs via nasal sprays reduced the duration of cold
symptoms and viral loads in nasal wash fluids [107].

Table 9. CG anti-respiratory virus activities in vivo animal studies. (MDCK cells, Madin–Darby canine
kidney cells; PMN, polymorphonuclear leukocytes; BID, twice a day; RSV, respiratory syncytial virus).

CG Type Virus Type Experimental Model Dose Antiviral Assay Effects Ref

Type II CG
Influenza virus

H1N1
(A/PR/8/34)

BALB/c mice intranasal
infection 1 mg/mL

Virus titration
with MDCK

cells

Depleted
macrophages and
increased PMN in

the blood,
enhancement of

viral titer

[100]

Type II CG
Influenza virus

H1N1
(A/PR/8/34)

BALB/c mice intranasal
infection 200 mg/kg

Virus titration
with MDCK

cells

Depleted
macrophages,

phagocytes, and
monocytes

[102]

ι-CG

Influenza virus
strain H1N1

(A/PR8/34) and
the formerly

pandemic H3N2
(A/Aichi/2/68)

C57Bl/6 mice intranasal
infection

60 µg BID
for 15 days PFU

Reduced viral titers
and increased
survival (40%)

[96]

κ-CG (low
MW)

Mouse adapted
influenza virus

A/FM/1/47(H1N1)

ICR mice with nasal
drip

40 µL of
1.5 mg/mL
for 7 days

Measure
pulmonary

edema index

Inhibition of
pulmonary edema

in mice
[101]

κ/ι-CG and
zanamivir

Influenza A
virus

H1N1(09)pdm,
H3N2, H5N1,

and H7N7

C57BL/6 mice with
intranasal injection

50 µL of
1.2 and

0.4 mg/mL
stock BID for

5 days

Survival and
weight loss,

necropsy, and
inflammation

Increased survival,
decreased weight

loss, reduced
necropsy, and
inflammation

[98]

Table 10. CG anti-respiratory virus activities in clinical studies. (BID, twice a day; RSV, respiratory
syncytial virus).

CG Type Virus Type Experimental Model Dose Antiviral Assay Effects Ref

ι-CG
(Coldmaris)

Respiratory viruses
(influenza, parainfluenza,
coronavirus, rhinoviruses,

and human
metapneumovirus)

35 human subjects,
nasal spray, symptom

scores
0.12%

Measure viral
loads in nasal

lavages

Lowered symptom
scores and viral
loads, lowered

proinflammatory
cytokines

[105]

ι-CG
(Coldmaris)

Respiratory viruses
(influenza, parainfluenza,

coronavirus, RSV,
rhinoviruses, and human

metapneumovirus)

213 young human
subjects, nasal spray,

symptom scores
0.12%

Measure viral
loads in nasal

lavages

Lowered viral loads
but no effects on
symptom scores

[106]

ι-CG
(Coldmaris)

Respiratory viruses
(influenza, parainfluenza,

coronavirus, RSV,
rhinoviruses, and human

metapneumovirus)

211 patients intranasal
spray 0.12%

Measure viral
loads in nasal

lavages

Reduced duration of
disease, alleviation
of symptom, and

reduced viral titers

[107]

ι-CG Rhinovirus, coronavirus,
and influenza A virus

254 human subjects
with nasal spray

0.12% TID
for 7 days

Nasal lavage
sample

Reduced duration of
disease, increased

viral clearance, and
reduced relapses of

symptom

[108]

ι-CG Rhinovirus, coronavirus,
and influenza A virus

200 human subjects
with nasal spray

0.12% QID
for 4–10 days

Nasal lavage
sample

No difference in
total symptom

scores and more
effective in
coronavirus

[109]
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The low molecular weight version of κ-CG also significantly suppressed mouse-adapted
influenza virus-induced pulmonary edema [101]. The administration of a CG nasal spray diminished
virus-confirmed common cold duration in children as well as in adults. It also increased viral clearance
and reduced symptom relapse [108]. ι-CG also significantly reduced rhinovirus/enterovirus-induced
cold symptoms relative to a placebo during the first four days when symptoms were most severe [109].
These data further suggest that CGs have highly active antiviral potentials against a variety of
respiratory viruses.

6. Human Papillomavirus (HPV)

6.1. In Vitro Anti-HPV Activity

High-risk type HPV infection is a major cause of cervical cancer development in women. Five
studies examined the in vitro antiviral activities of CGs against different types of HPV including
HPV6, 16, 18, 31, 34, 45, and 58 using HeLa, 293T, and NCI-60 cells [20,33,86,110,111] (Table 11).
Interestingly, genital HPVs were approximately one thousand-fold more susceptible to CGs since their
IC50 values against HPVs were all within nanomolar ranges. In addition to this superior antiviral
potency, CGs blocked HPV infection through a second, post-attachment heparan sulfate-independent
effect in addition to their heparan sulfate-mimicking antiviral mechanism [20]. Since alpha 6 integrin
is a major host receptor necessary for HPV infection, CG-induced alpha 6 integrin internalization may
also contribute to reduced availability of the host receptor. These three distinct antiviral mechanisms
may play a role in facilitating nanomolar CG antiviral activities against HPV infection [86]. Since HPV
capsids specifically bind to tumors in a heparan sulfate-dependent manner in vitro and in vivo, ι-CG
treatment blocked HPV binding and infection in all tumor lines [110]. In line with this, a CG-based
vaginal lubricant maintained in vitro inhibitory activity against HPV infection according to CVLs
collected after sexual intercourse [112].

Table 11. CG in vitro anti-HPV activities. (GFP, green fluorescence; RFP, red fluorescence; FACS,
Fluorescence-activated cell sorting; PsVs, pseudoviruses).

CG Type Virus Type Experimental System Anti-Viral Assay IC50 (ng/mL) Ref

λ/ι-CG HPV16
HeLa cells infected
with pseudovirus

with GFP
GFP assay 5–44 [20]

κ/λ-CG
(PC-515)

HPV16, 18, and
45 PsVs

HeLa cells infected
with pseudovirus with

luciferase
Luciferase assay 1–20 [33]

CG

HPV16, 18, 31,
34, 58, and 6

with luciferase
reporter

293T cell infected with
furin-cleaved HPV16

pseudovirus
Luciferase assay 250–1000 [111]

CG HPV16
HeLa cells infected

with pseudovirus with
luciferase

Luciferase assay 38.6 [86]

1% ι-CG HPV 16 VLP
and PsV

NCI-60 cells infected
with RFP-encoded
HPV pseudovirus

GFP assay by FACS N/D [110]

6.2. In Vivo Anti-HPV Activity

The in vivo anti-HPV activities of CGs were tested using mouse and macaque models (Table 12).
The ι-CG treatment prevented HPV infection even in the presence of nonoxynol-9, which is a vaginal
spermicide [113]. This HPV-suppressive property of ι-CG was encouraging since nonoxynol-9 greatly
increased HPV infection susceptibility in a previous study [90,113]. A CG-containing gel also caused
significantly less HPV infection in a mouse model [33]. A griffithsin-CG combination provided
synergistic protection against vaginal HPV infection in mice when they were dosed during and after
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HPV16 challenge [86]. In particular, a griffithsin-CG combination in the form of a fast-dissolving insert
protected mice vaginally against HPV pseudovirus [80]. In clinical studies, the prevalence of HPV
infection was lower in compliant CG users than compliant placebo users [114] (Table 13). When the
CG gel was substituted for Sortilege during an internal digital examination, a significant decrease in
HPV infection was observed [115]. As cytology screening in women induced a transient enhancement
of HPV infection susceptibility, CG-based gel administration during examination might help mitigate
this potential HPV infection enhancement induced by cytological screening [115]. CG treatment also
lowered the number of HPV-infected participants [116]. In addition, CG gel administration accelerated
the normal clearance of genital HPV infection in HPV-positive women [117]. All of these data suggest
the superior antiviral potency of CGs in both animal and clinical studies.

Table 12. CG’s in vivo anti-HPV activities in animal studies. (GFP, green fluorescence protein; RFP, red
fluorescence protein; FDI, fast-dissolving insert; CVL, cervicovaginal lavage).

CG Type Virus Type Experimental System Anti-Viral Assay Readout Effects Ref

ι-CG (1%) HPV16

Mouse cervicovaginal
mucosa infected with

RFP-encoded
pseudovirus with GFP

capsid

GFP and RFP assay Inhibition of
infection [113]

ι-CG (1%) HPV16

12 rhesus macaques
infected with
RFP-encoded

pseudovirus with GFP
capsid

Immunohistochemistry of
the infected cervix tissue

Decreased
infection that
was enhanced
by cytologic
examination

[115]

3% λ/κ-CG
(PC-515) +

divine 9
HPV16

Mouse cervicovaginal
mucosa infected with

RFP-encoded
pseudovirus with GFP

capsid

GFP and RFP assay
Inhibition not

affected by
seminal plasma

[33]

Griffithsin
+ CG HPV16

Mouse cervicovaginal
mucosa infected with

luciferase-encoded
pseudovirus

Luciferase Inhibition [86]

CG-based
lubricant
(Divine 9)

HPV16

Antiviral activity of
cervicovaginal lavage
(CVL) using 293T cells

infected with
SEAP-encoded PsV

RFP assay Inhibition [112]

Griffithsin
+ CG HPV

Balb/C mice equipped
with FDI infected with

luciferase-encoded
HPV16 pseudoviruses

Luciferase Inhibition [80]

Table 13. CG’s anti-HPV activities in clinical studies. (GFP, green fluorescence protein; RFP, red
fluorescence protein; FDI, fast-dissolving insert; CVL, cervicovaginal lavage).

CG Type Virus Type Experimental System Anti-Viral Assay Readout Effects Ref

λ/κ-CG
(carraguard)

High-risk
HPVs

1718 women used gel
plus condoms during

each act of vaginal
intercourse

Prevalence of high-risk
HPV infection by Pap

smear

Lower
prevalence of
high-risk HPV

infection

[114]

CG-based
lubricant
(Divine 9)

HPV

280 women used gel
plus condoms during

each act of vaginal
intercourse

Prevalence of high-risk
HPV infection by Pap

smear

Lower
prevalence of
HPV infection

[116]

0.02% CG and
Propionibacterium
extract (CGP)

HPV 40 HPV-infected
women

Clearance of HPV
infection

Accelerated the
clearance of

HPV infection
(26 to 60%

clearance rate)

[117]
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7. Dengue Virus (DENV)

Dengue virus (DENV) causes dengue fever, a mosquito-borne tropical disease. Five different
in vitro studies reported CG antiviral activities against DENV using Vero, HepG2, foreskin PH, C6/356
HT mosquito, and BHK-21 cells [16,29,36,38,39] (Table 14). λ-CG inhibitory activities against DENV
infection result from dual interference with virus adsorption and internalization of the nucleocapsid into
the cytoplasm [36]. More specifically, CG-treated DENV particles were not released from endosomes
after entry [36]. However, ι-CG failed to inhibit the adsorption of DENV to C6/36 HT mosquito
cells [38]. This failure appeared to be related to the low presence of adequate heparan sulfate in
C6/36 HT cell surfaces [38]. The development of CG resistance by DENV was also noticed after serial
passaging in Vero cells. However, antiviral susceptibility was not altered in DENV propagated in
C6/36 HT mosquito cells [16]. In particular, adsorption kinetics and internalization of resistant DENV
variants in Vero cells was significantly diminished, but entry into C6/36 cells was unaffected [37].
A strong inhibitory CG effect was also confirmed by an antiviral assay that monitors cellular oxygen
consumption rates [29].

Table 14. CG in vitro anti-DENV activities. (BHK-21 cells, baby hamster kidney 21 cells).

CG Type Virus Type Experimental System Anti-Viral Asssay IC50 (µg/mL) Ref

κ/ι/ν-CG DENV2
Vero cells, human

hepatoma HepG2, and
foreskin PH cells

Plaque formation 1 [39]

ι/λ/κ-CG DENV1, 2, 3, 4
Vero cells, human

hepatoma HepG2, and
foreskin PH cells

Plaque formation 0.1–40.7 [36]

ι/λ/κ-CG DENV2 Vero cells and C6/36
HT mosquito cells Plaque formation 0.4/7 [38]

ι-CG DENV2 Vero cells and C6/36
HT mosquito cells Plaque formation 22.5/0.64 [16]

CG DENV2 BHK-21 fibroblast cells Measuring cellular oxygen
consumption rate 10 [29]

λ-CG DENV2 Vero cells and C6/36
HT mosquito cells Plaque formation >50 [37]

8. Other Viruses

Several studies have confirmed the in vitro antiviral activities of CGs against different kinds
of viruses including adenovirus [18,118], African swine fever virus [27,35,83,118], arenavirus [17],
chikungunya virus [19], coxsackievirus [18], Ebola virus [119], encephalomyocarditis virus [118],
enterovirus [120,121], hantavirus [122], hepatitis A virus, measles virus [118], metapneumovirus [123],
parainfluenza virus [18], poliovirus [18,118], rabies, reovirus [30], semliki forest virus [19,118],
sindbis virus [18], scrapie [124], vaccinia virus [18,118], and vesicular stomatitis virus [18,118] (Table 15).
Their IC50 values ranged from 0.2 to 400 ug/mL.
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Table 15. CG in vitro antiviral activities on other viruses. (N/D, not determined).

Virus Type CG Type Cell Line IC50 or CPE50 (µg/mL) Ref

Adenovirus type 2 κ and λ Hela cells >200/>200 [18]

Adenovirus type 5 ι Hela cells >200 [118]

African swine fever
virus ι Vero cell 10 [118]

African swine fever
virus ι Vero cell 50 [35]

African swine fever
virus κ and λ Vero cell 25/150 [27]

Arenavirus λ Vero cells 0.2–0.3 [17]

Chikungunya virus ι Vero cells 3.8 [19]

Cosackiesvirus
type B4 κ and λ Hela cells >400/>400 [18]

Ebola virus ι Caco-2 cells N/D [119]

Encephalomyocarditis
virus ι Not specified 10 [118]

Enterovirus 71 κ Vero cells 10–100 [120]

Enterovirus 71 ι Vero cells 17.8 [121]

Hantavirus ι

Vero cells and
mouse

macrophages
[122]

Hepatitis A virus κ, ι and λ PLC/PRF/5 cells 2.5, 4.5, and 100.3 [28]

Measles ι Not specified >200 [118]

Metapneumoniavirus ι

Vero and human
bronchial epithelial

cells (BEAS-2B)
0.1–1 [123]

Parainfluenza virus
type 3 κ and λ Vero cells >40/>4 [18]

Polio type 1 ι Hela cells >200 [118]

Polio type 1 κ and λ Hela cells >400/>400 [18]

Rabies λ P32 BSR cells 15–57 [30]

Reovirus type 1 κ and λ Vero cells >40/>4 [18]

Semliki Forest
virus ι Vero cells 0.7 [19]

Semliki Forest
virus ι BHK-21 cells 10 [118]

Sindbis virus κ and λ Vero cells 7/2 [18]

Scrapie λ type IV
Female compton
mouse infected

with scrapie
inhibition of infection [124]

Vaccinia ι PPK cells 10 [118]

Vaccinia κ and λ PPK cells 36/16 [18]

Vesicular stomatitis
virus ι PRK cells >200 [118]

Vesicular stomatitis
virus κ and λ PRK cells 0.3/0.2 [18]

Vesicular stomatitis
virus κ and λ Hela cells 7/4 [18]
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9. Conclusions and Future Direction

This review examined many of the pharmacological properties of CGs. They include in vitro
and in vivo safety profiles; mechanisms of antiviral action; and in vitro and in vivo antiviral activities
against HIV, HSV, respiratory viruses, HPV, DENV, and other viruses. Novel phenomena such
as enhancement of HIV infectivity and development of CGs-resistant HSV variants found during
development processes were also discussed. Despite the rather disappointing outcome of one clinical
study, there still seem to be many desirable characteristics of microbicides that use CGs as the main
pharmacological ingredient.

Due to the abundance of red algae as a natural resource, its production cost should be relatively
low when compared to other chemically synthesized drugs. As a wide distribution of microbicides in
the general public is necessary to efficiently prevent transmission of viral infections within society,
the low production cost of CG-based microbicides would provide better access to these types of
preventive measures.

Due to the broad antiviral spectrum of CGs [1–3,16], the use of CG-based microbicides may be
the best prophylactic strategy in preventing multiple viral infections simultaneously. The versatile
preventive capability of CGs could help suppress many clinically relevant STIs caused by HIV,
HSV, and HPV. In addition to their superior antiviral activities against STIs, CGs also demonstrated
highly effective inhibitory actions against respiratory viruses such as human rhinovirus, influenza
virus, parainfluenza virus, coxsackievirus, and coronavirus, which are responsible for major,
clinically-important respiratory infections [96,100–103]. As shown in Table 10, the clinical application
of CG-based nasal sprays produced encouraging results. Considering the ongoing, world-wide
COVID-19 pandemic severity, the use of CG-based nasal sprays might help mitigate the spread of
coronavirus infections. The development of CG-based sprays as general disinfectants or virucides for
public hygiene could be envisaged due to their extreme antiviral coverage.

The thousand-fold increase in their antiviral potency against HPV when compared to HIV and HSV
highlights the possibility of developing CG-based microbicides that are specifically designed to prevent
HPV infections. The use of CG-based gels could provide an on-demand, pre-exposure prophylactic
option to those who are not vaccinated and want to protect themselves against HPV infection.

Numerous examples of successfully combining CGs with other antiviral drugs to synergistically
block multiple viral infections emphasize their utility as an antiviral booster. As current anti-HIV drugs
are not recommended for single preventive use due to the potential spread of drug resistance,
a combination of CGs with anti-HIV drugs, such as AZT and MIV-150, may minimize drug
resistance-associated problems.

Despite all of these advantages, there are still many challenges that need to be addressed to
successfully develop CG-based microbicides. First, the reason why CG-based gels failed to prevent
HIV transmission in clinical trials needs to be explored more thoroughly. Particularly, a more detailed
pharmacokinetic study of CGs needs to be performed to exclude the possibility of insufficient CG
delivery in target tissues as a contributing factor to the loss of CG-based gel antiviral activity. Also,
CG-based gel clinical study designs need to be re-evaluated to ensure they do not affect the quality of
the overall conclusions of such a clinical study. Second, HIV infection enhancement by CGs needs to
be revisited. This seemingly paradoxical pro-viral action of CGs, specifically at low concentrations,
needs to be explored in more detail experimentally and mechanistically. CG dose-dependent differential
effects on the overall structures of virus particles and the efficiency of virus entry need to be studied at
the molecular level. Neutralizing HIV infectivity enhancement by CGs via chemical alteration should
be explored. Third, the molecular mechanism that causes the emergence of CG-resistant viral variants
needs to be determined. In particular, genomic analyses of resistant variants should be performed to
find potential relationships between specific viral genes and resistance development. The feasibility
of delivering high concentrations of CGs to prevent the development of resistance also needs to be
tested. Fourth, CG host-targeting antiviral modes of action such as disruption of host receptors and
inhibition of intercellular virus transfer need to be studied in more detail. As viruses may be less
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prone to develop resistance to CG host-dependent antiviral activities, potentiating these CG virus
entry-independent antiviral activities by chemical modification should be tested in the future.

To reassess the possibility of a second round of CG pharmacological development as a new class
of preventive microbicides, all CG-based microbicide preclinical and clinical development processes
were summarized and re-evaluated. Based on the strengths and weaknesses of CGs, the direction of a
second CG development round was proposed. This bird’s-eye view of the various pharmacological
characteristics of CGs will help provide future research directions for the successful development of
CG-based antimicrobial prophylactics.
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