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TAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:he bottom line

Recent reports of the transmission of Severe Acute Respiratory Syndrome Coronavirus 2

(SARS-CoV-2) by fully vaccinated people [1] do not undermine the value of injected vaccines

that continue to protect against serious illness and hospitalisation. They are, however, an early

warning for immediate action to develop new drugs and approaches against Coronavirus Dis-

ease 2019 (COVID-19). The logical answer is to target the initial nasal portal of COVID-19

entry into the body with prophylactic drugs, which, together with injected vaccines, could

potentially completely prevent infection and subsequent transmission of a range of variants.

This paper outlines published work in this vital area in the hope that it becomes an urgent pri-

ority for development.

COVID-19 variants

Over 12,000 mutations have been catalogued in SARS-CoV-2 genomes [2] and have resulted

in new SARS-CoV-2 variants, including those identified in South Africa (B.1.351), United

Kingdom (B.1.1.7), California (B.1.427 and B.1.429), Brazil (P.1 and P.2), India

(B1.617.2 = Delta), Peru (C.37 = Lambda), and Colombia (Mu). Such variants may have

increased transmissibility and pathogenicity, higher viral loads, and vaccine resistance [3–5].

A missed opportunity

Vaccines provide short-term relief from COVID-19, but rapid evolution of resistant viral vari-

ants necessitates additional supportive strategies, including broad-spectrum antiviral agents

coupled with innovative prophylactic and therapeutic processes. Antiviral agents against

SARS-CoV-2 should have been repurposed drugs, but of all the drugs tested, those effective in

the later stages of infection, such as dexamethasone, are the main ones granted approval for

emergency use [6]. One exception has been monoclonal antibody therapy [7]. An important

missing link has been the lack of innovative drug development for treating the early stages of

COVID-19 infection. Disease pathology extols studying the initial interactions of invading

pathogens with the body, involving adsorption, colonisation, penetration, multiplication, and

host innate immunity [8].
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COVID-19 entry portal

The main entry of SARS-CoV-2 occurs in the ciliated epithelium lining the nose [9–11]. The

importance of the nasal epithelium in host invasion, involving the specific attachment of influ-

enza and other viruses to the ciliated cells, was reported over 50 years ago [12]. These ciliated

cells have the highest expression levels, in the airways of the body, of the SARS-CoV-2 entry

receptors, angiotensin converting enzyme 2 (AAU : PleasenotethatACE2hasbeendefinedasangiotensinconvertingenzyme2inthesentenceTheseciliatedcellshavethehighest::::Pleasecheckandcorrectifnecessary:CE2), and the viral entry-associated protease,

transmembrane serine protease 2 (TAU : PleasenotethatTMPRSS2hasbeendefinedastransmembraneserineprotease2inthesentenceTheseciliatedcellshavethehighest::::Pleasecheckandcorrectifnecessary:MPRSS2) [9–11]. SARS-CoV-2 binds to these using the

receptor-binding domain (RBD) of the virus spike protein [13]. Following attachment and

entry into the nasal epithelium, the virus multiplies, spreading around the body [11]. To

emphasise, the ciliated cells of the nasal mucosa are the main host entry targets for the virus, so

that denying access of SARS-CoV-2 to the entry receptors by intranasal drug prophylaxis

needs prioritising.

New opportunities—Nasal therapy

Most SARS-CoV-2 vaccines are injected and mainly induce serum immunoglobulin G1

(IgG1), which enters and protects the lungs, leaving the nasal epithelia and upper respiratory

tract largely unprotected. Any serum immunoglobulin A1 (IgA1) produced by vaccination is

not effectively transported to the secretions of the upper respiratory tract including those of

the nasal mucosa [14]. The dynamics of the mucosal immune response to COVID-19 is largely

neglected, although the IgA secreted is 7 times more potent than IgG at neutralising SARS-

CoV-2 [13–15]. Only natural infections induce both IgG1to protect the lungs as well as IgA1

to protect the upper respiratory tract, including the nasal passages [16]. Thus, injected vaccines

fail to fully address the main portal of virus entry into the body through the nose, and, yet, few,

if any, drugs have been developed to kill the virus in this early stage.

The nose is therefore likely to remain a source of infective virus transmission even after par-

enteral vaccination, which fails to completely eliminate the virus in the nose [1,17]. A single

intranasal vaccination in rhesus macaques prevented SARS-CoV-2 infection in both the upper

and lower respiratory tracts [18]. Parenteral vaccination and nasal therapy combined could

realise the ultimate goal of completely eliminating these viral pathogens and sterilising the

nose.

Intranasal drug candidates

Drugs for nasal pharmacological prophylaxis against COVID-19 are under development and

include (1) those blocking virus attachment to the host entry receptors without involving host

immunity; and (2) intranasal vaccines or immune stimulants eliciting antiviral antibodies and

memory cells at the mucosal surface.

• Category 1: Include povidone-iodine [19], nitric oxide [20], ethyl lauroyl arginate hydro-

chloride [21], astodrimer sodium (SPL7013) [22,23], iota-carrageenan [24–26], and many

others. These utilise nasal sprays and are at different stages of development globally. One

very significant study for prevention of the early phase of SARS-CoV-2 entry into the body

utilises poly(lactic-co-glycolic acid) nanoparticles to deliver and confine drugs specifically to

treat the nasal sinuses with slow release over one week [27]. Stringent published clinical trials

of these drugs are needed to satisfy the regulatory bodies as these may become available for

sale to the public. Once approved, however, they could have enormous impacts on COVID-

19 prophylaxis and therapy, particularly in deprived countries, as they are cheap and conve-

nient and could also deal with breakthrough virus to sterilise the nose. They might be more

acceptable too to those refusing injected vaccines.
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• Category 2: Intranasal vaccines are also being developed, inducing IgA since dimeric forms

of these antibodies are particularly potent and found at the mucosal surfaces where SARS-

CoV-2 targets the cells [14].

Previous studies to develop nasal therapy for respiratory viruses have met with variable suc-

cess. For example, a live attenuated flu nasal spray vaccine, called Flu Mist, has been approved

by the US Food and Drug Administration (FDA), although the results of clinical trials have

been discordant [28]. Developing nasal sprays with some respiratory viruses can be problem-

atic, epitomised by the common cold and the work of David Tyrell [29] who showed that more

than 100 different viruses may be involved. SARS-CoV-2, however, is more promising since

few variants dominate the pandemic and parenteral vaccines have already been produced. Pre-

clinical and clinical trials with a variety of drugs for nasal therapy against COVID-19 are also

underway. For example, the nasal delivery of IgG monoclonal antibodies against SARS-CoV-2

engineered into immunoglobulin M (IgM) antibodies protect against virus variants in rats

[30], while intranasal vaccination with the AstraZeneca vaccine, AZD1222, reduces virus con-

centrations in nasal swabs in 2 different SARS-CoV-2 animal models [31]. Furthermore, trans-

genic mice receiving one intranasal dose of an adenovirus-vectored vaccine, ChAd-

SARS-CoV-2-S, also conferred superior immunity to SARS-CoV-2 than 2 intramuscular injec-

tions and evidenced sterilisation immunity in the upper respiratory tract [32]. Additional

progress has been made in India with the approval of a human Phase II clinical trial of a

COVID-19 nasal vaccine [33]. There will inevitably be delays and setbacks due to our lack of

understanding of the dynamics of intranasal vaccination for COVID-19 so that additional

research is urgently required [14,34,35]. Meanwhile, some Category 1 drugs may be approved

more rapidly and available to prevent viral shedding following full vaccination against Delta

and other variants [23–25].

In conclusion, nasal therapy has great potential to prevent and treat a variety of respiratory

viruses. As patients present at different stages of COVID-19 or with other viral infections, we

will need a selection of therapeutic strategies from vaccines to broad-spectrum antiviral drugs,

delivered in different ways from injection, sprays/inhalations, and tablets alone or in combina-

tions, to counter these threats.
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